Long-term potentiation is associated with changes in synaptic ultrastructure in the rat neocortex.
نویسندگان
چکیده
Long-term potentiation (LTP) in the sensorimotor cortex of freely moving rats has been associated with changes in dendritic morphology and dendritic spine density. The current research examined changes in synaptic number and ultrastructure associated with LTP in this cortical region. LTP was induced over a 1 h period and the animals were sacrificed 2 h after the initial stimulation of the LTP group. Synapses within the terminal area of the apical dendrites from layer III pyramidal neurons were quantified by determining the total number of synapses per neuron, the number of excitatory and inhibitory contacts, number of synapses with different curvature subtypes, number of perforated synapses, and synaptic length. Several changes in synaptic morphology of excitatory synapses were revealed but no overall increase in the number of synapses per neuron was evident. Specifically, the induction of LTP was associated with an increased number of excitatory perforated and concave shaped synapses. Increased numbers of perforated concave synapses were also found to be significantly correlated with the degree of potentiation in the LTP animals. These and previous results suggest similar synaptic changes in both the cortex and hippocampus during the early phases of LTP maintenance and distinct synaptic changes during later phases of LTP maintenance.
منابع مشابه
P15: Hippocampus-Neocortical Communication in Learning
The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...
متن کاملDoxepin improves stress-impaired long-term potentiation and gene expression of BDNF in the rat hippocampus
Introduction: Stress is associated with neurological and cognitive disorders. It has been suggested that doxepin, in addition to its influence on the content of neurotransmitters, has probable neuroprotective effects as well. Therefore, the aim of this study was to investigate the effects of doxepin on synaptic plasticity and brain-derived neurotrophic factor (BDNF) gene expression in the rat h...
متن کاملEffects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملPentylenetetrazol-kindling induced synaptic plasticity in the CA1 region of rat hippocampus
The impact of pentylenetetrazol-induced kindling on the effectiveness of theta pattern primed-bursts (PBs) for the induction of long-term potentiation (LTP) of field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) were investigated in hippocampal CA1 of pentylenetetrazol-kindled rats in vivo. The results showed that shortly after kindling, control animals had normal LTP of...
متن کاملPentylenetetrazol-kindling induced synaptic plasticity in the CA1 region of rat hippocampus
The impact of pentylenetetrazol-induced kindling on the effectiveness of theta pattern primed-bursts (PBs) for the induction of long-term potentiation (LTP) of field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) were investigated in hippocampal CA1 of pentylenetetrazol-kindled rats in vivo. The results showed that shortly after kindling, control animals had normal LTP of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Synapse
دوره 59 6 شماره
صفحات -
تاریخ انتشار 2006